Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 424(2): 113507, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796746

RESUMO

Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Superóxidos/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/patologia , Actinas/genética , Actinas/metabolismo , Mutação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
2.
J Cardiovasc Pharmacol Ther ; 27: 10742484221088655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35353647

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by dystrophin gene mutations affecting striated muscle. Due to advances in skeletal muscle treatment, cardiomyopathy has emerged as a leading cause of death. Previously, nicorandil, a drug with antioxidant and nitrate-like properties, ameliorated cardiac damage and improved cardiac function in young, injured mdx mice. Nicorandil mitigated damage by stimulating antioxidant activity and limiting pro-oxidant expression. Here, we examined whether nicorandil was similarly cardioprotective in aged mdx mice. METHODS AND RESULTS: Nicorandil (6 mg/kg) was given over 15 months. Echocardiography of mdx mice showed some functional defects at 12 months compared to wild-type (WT) mice, but not at 15 months. Disease manifestation was evident in mdx mice via treadmill assays and survival, but not open field and grip strength assays. Cardiac levels of SOD2 and NOX4 were decreased in mdx vs. WT. Nicorandil increased survival in mdx but did not alter cardiac function, fibrosis, diaphragm function or muscle fatigue. CONCLUSIONS: In contrast to our prior work in young, injured mdx mice, nicorandil did not exert cardioprotective effects in 15 month aged mdx mice. Discordant findings may be explained by the lack of cardiac disease manifestation in aged mdx mice compared to WT, whereas significant cardiac dysfunction was previously seen with the sub-acute injury in young mice. Therefore, we are not able to conclude any cardioprotective effects with long-term nicorandil treatment in aging mdx mice.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/prevenção & controle , Coração , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Nicorandil/farmacologia
3.
BMC Cardiovasc Disord ; 21(1): 302, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130633

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) associated cardiomyopathy is a major cause of morbidity and mortality. In an in vitro DMD cardiomyocyte model, nicorandil reversed stress-induced cell injury through multiple pathways implicated in DMD. We aimed to test the efficacy of nicorandil on the progression of cardiomyopathy in mdx mice following a 10-day treatment protocol. METHODS: A subset of mdx mice was subjected to low-dose isoproterenol injections over 5 days to induce a cardiac phenotype and treated with vehicle or nicorandil for 10 days. Baseline and day 10 echocardiograms were obtained to assess cardiac function. At 10 days, cardiac tissue was harvested for further analysis, which included histologic analysis and assessment of oxidative stress. Paired student's t test was used for in group comparison, and ANOVA was used for multiple group comparisons. RESULTS: Compared to vehicle treated mice, isoproterenol decreased ejection fraction and fractional shortening on echocardiogram. Nicorandil prevented isoproterenol induced cardiac dysfunction. Isoproterenol increased cardiac fibrosis, which nicorandil prevented. Isoproterenol increased gene expression of NADPH oxidase, which decreased to baseline with nicorandil treatment. Superoxide dismutase 2 protein expression increased in those treated with nicorandil, and xanthine oxidase activity decreased in mice treated with nicorandil during isoproterenol stress compared to all other groups. CONCLUSIONS: In conclusion, nicorandil is cardioprotective in mdx mice and warrants continued investigation as a therapy for DMD associated cardiomyopathy.


Assuntos
Cardiomiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Nicorandil/farmacologia , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Feminino , Fibrose , Isoproterenol , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Xantina Oxidase/metabolismo
4.
J Muscle Res Cell Motil ; 41(4): 269-284, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31564031

RESUMO

microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.


Assuntos
Exossomos/metabolismo , MicroRNAs/genética , Músculos/fisiopatologia , Humanos
5.
Ment Health Clin ; 7(1): 24-28, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29955494

RESUMO

Psilocybin, a classic hallucinogen, is a chemical produced by more than 100 species of mushrooms worldwide. It has high affinity for several serotonin receptors, including 5-HT1A, 5-HT2A, and 5-HT2C, located in numerous areas of the brain, including the cerebral cortex and thalamus. With legislation introduced in 1992, more work is being done to further understand the implications of psilocybin use in a number of disease states. Certain mental health disease states and symptoms have been studied, including depressed mood, anxiety disorders, obsessive-compulsive disorder, alcohol use disorder, and tobacco use disorder. This article provides an in-depth review of the study design and results of psilocybin in each of these conditions and discusses the clinical potential for use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...